GraphMAE: Self-Supervised Masked Graph Autoencoders

Zhenyu Hou Tsinghua University houzy21@mails.tsinghua.edu.cn

Yuxiao Dong* Tsinghua University yuxiaod@tsinghua.edu.cn Xiao Liu Tsinghua University liuxiao21@mails.tsinghua.edu.cn

Hongxia Yang DAMO Academy, Alibaba Group yang.yhx@alibaba-inc.com

Jie Tang*
Tsinghua University
jietang@tsinghua.edu.cn

Yukuo Cen Tsinghua University cyk20@mails.tsinghua.edu.cn

> Chunjie Wang BirenTech Research cjwang@birentech.com

KDD 2022

Code: github.com/THUDM/GraphMAE

2022. 08. 24 • ChongQing

Introduction

Methods	Feat. Loss	AE	No Struc.	Mask Feat.	GNN Decoder	Re-mask Dec.	Space	Enc(GNN)+	-Dec(MLP), MSE	79.9
VGAE [20]	n/a	√	-	-	-	-	$O(N^2)$		+ mask feat.	79.2
ARVGA [26]	n/a	✓	-	-	12	14	$O(N^2)$		$MSE \rightarrow Cosine$.	≯ 80.72
MGAE [42]	MSE	√	-	\checkmark	-	22	O(N)	70×500	+ mask feat.	≯ 82.0
GALA [27]	MSE	\	\checkmark	70	√	1.7	O(N)	Target	Scaled Cosine.	₹ 82.2
GATE [31]	MSE	\	-	-	\		O(N)			02.2
AttrMask [16]	CE	√	\checkmark	\checkmark	1-	3=	O(N)		+ Link Recon.	82.0
GPT-GNN [17]	MSE	_	-	✓	-	12	O(N)	S S	-	≯ 82.7
AGE [3]	n/a	1	-	-	-	6.F	$O(N^2)$	Decoding	5.00 (4.00 (5.00))	
NodeProp [18]	MSE	V	\checkmark	\checkmark	-	100	O(N)		+ Re-mask	
GraphMAE	SCE	✓	✓	✓	✓	✓	O(N)	Gr	aphMAE (full)	▶ 84.2

⁽a) Technical comparison between generative SSL methods.

(b) The effect of GraphMAE designs on the performance on Cora dataset.

Figure 1: Comparison between generative SSL methods and the effect of GraphMAE design. *AE*: autoencoder methods; *No Struct.*: no structure reconstruction objective; *Mask Feat.*: use masking to corrupt input features; *GNN Decoder*: use GNN as the decoder; *Re-mask Dec.*: re-mask encoder output before fed into decoder; *Space*: run-time memory consumption; *MSE*: Mean Squared Error; *SCE*: Scaled Cosine Error; *CE*: Cross-Entropy Error; *SCE* represents our proposed Scaled Cosine Error.

Method

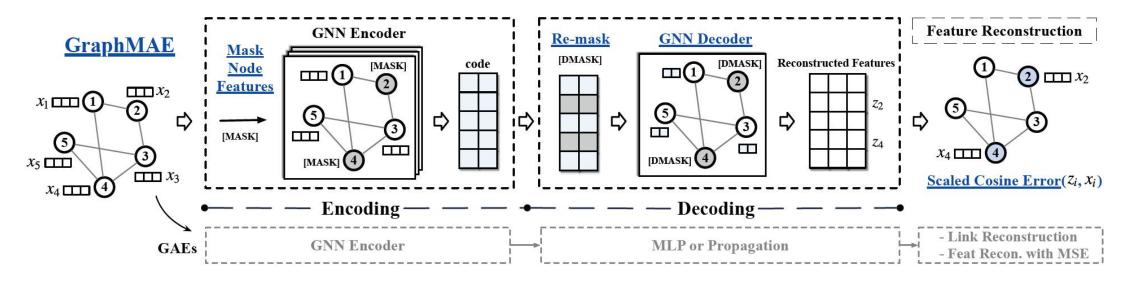


Figure 2: Illustration of GraphMAE and the comparison with GAE. We <u>underline</u> the key operations in GraphMAE. During pretraining, GraphMAE first masks input node features with a mask token [MASK]. The corrupted graph is encoded into code by a GNN encoder. In the decoding, GraphMAE re-masks the code of selected nodes with another token [DMASK], and then employs a GNN, e.g., GAT, GIN, as the decoder. The output of the decoder is used to reconstruct input node features of masked nodes, with the scaled cosine error as the criterion. Previous GAEs usually use a single-layer MLP or Laplacian matrix in the decoding and focus more on restoring graph structure.

Method

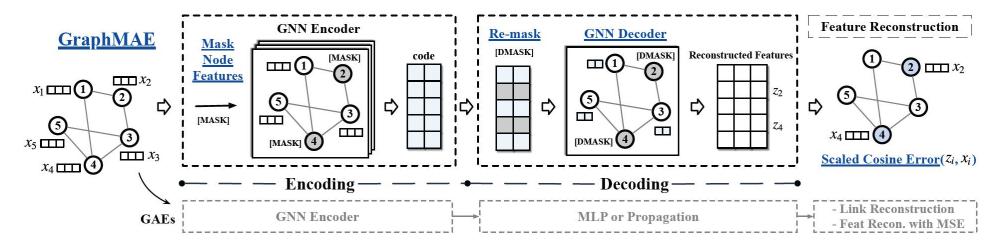


Figure 2: Illustration of GraphMAE and the comparison with GAE. We <u>underline</u> the key operations in GraphMAE. During pre-training, GraphMAE first masks input node features with a mask token [MASK]. The corrupted graph is encoded into code by a GNN encoder. In the decoding, GraphMAE re-masks the code of selected nodes with another token [DMASK], and then employs a GNN, e.g., GAT, GIN, as the decoder. The output of the decoder is used to reconstruct input node features of masked nodes, with the scaled cosine error as the criterion. Previous GAEs usually use a single-layer MLP or Laplacian matrix in the decoding and focus more on restoring graph structure.

$$\widetilde{\mathbf{x}}_i = \begin{cases} \mathbf{x}_{[M]} & v_i \in \widetilde{\mathcal{V}} \\ \mathbf{x}_i & v_i \notin \widetilde{\mathcal{V}} \end{cases}$$

$$H = f_E(A, X), \ \mathcal{G}' = f_D(A, H), \tag{1}$$

Method

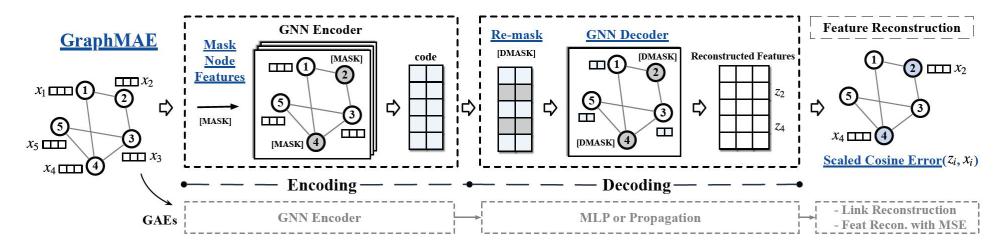


Figure 2: Illustration of GraphMAE and the comparison with GAE. We <u>underline</u> the key operations in GraphMAE. During pretraining, GraphMAE first masks input node features with a mask token [MASK]. The corrupted graph is encoded into code by a GNN encoder. In the decoding, GraphMAE re-masks the code of selected nodes with another token [DMASK], and then employs a GNN, e.g., GAT, GIN, as the decoder. The output of the decoder is used to reconstruct input node features of masked nodes, with the scaled cosine error as the criterion. Previous GAEs usually use a single-layer MLP or Laplacian matrix in the decoding and focus more on restoring graph structure.

$$\widetilde{\boldsymbol{h}}_{i} = \begin{cases} \boldsymbol{h}_{[M]} & v_{i} \in \widetilde{\mathcal{V}} \\ \boldsymbol{h}_{i} & v_{i} \notin \widetilde{\mathcal{V}} \end{cases} \qquad \mathcal{L}_{SCE} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} (1 - \frac{\boldsymbol{x}_{i}^{T} \boldsymbol{z}_{i}}{\|\boldsymbol{x}_{i}\| \cdot \|\boldsymbol{z}_{i}\|})^{\gamma}, \ \gamma \geq 1, \tag{2}$$

$$Z = f_D(A, \widetilde{H})$$

Table 1: Experiment results in unsupervised representation learning for <u>node classification</u>. We report the Micro-F1 (%) score for PPI and accuracy (%) for the other datasets.

	Dataset	Cora	CiteSeer	PubMed	Ogbn-arxiv	PPI	Reddit
Cumomriand	GCN	81.5	70.3	79.0	71.74±0.29	75.7±0.1	95.3±0.1
Supervised	GAT	83.0±0.7	72.5 ± 0.7	79.0 ± 0.3	72.10 ± 0.13	97.30 ± 0.20	96.0 ± 0.1
	GAE	71.5±0.4	65.8±0.4	72.1±0.5	- 9		
	GPT-GNN	80.1±1.0	68.4±1.6	76.3 ± 0.8	20	_	-
	GATE	83.2±0.6	71.8 ± 0.8	80.9 ± 0.3	-0	-	-
	DGI	82.3±0.6	71.8 ± 0.7	76.8 ± 0.6	70.34 ± 0.16	63.80 ± 0.20	94.0 ± 0.10
Calf ann amriand	MVGRL	83.5±0.4	73.3 ± 0.5	80.1 ± 0.7		-	-
Self-supervised	GRACE ¹	81.9±0.4	71.2 ± 0.5	80.6 ± 0.4	71.51 ± 0.11	69.71 ± 0.17	94.72±0.04
	BGRL ¹	82.7±0.6	71.1 ± 0.8	79.6 ± 0.5	71.64 ± 0.12	73.63 ± 0.16	94.22±0.03
	InfoGCL	83.5±0.3	73.5 ± 0.4	79.1 ± 0.2	-	-	-
	CCA-SSG ¹	84.0±0.4	73.1 ± 0.3	81.0 ± 0.4	71.24 ± 0.20	73.34 ± 0.17	95.07±0.02
	GraphMAE	84.2±0.4	73.4±0.4	81.1±0.4	71.75±0.17	74.50±0.29	96.01±0.08

The results not reported are due to unavailable code or out-of-memory.

¹ Results are from reproducing using authors' official code, as they did not report the results in part of datasets. The result of PPI is a bit different from what the authors' reported. This is because we train the linear classifier until convergence, rather than for a small fixed number of epochs during evaluation, using the official code.

Table 2: Experiment results in unsupervised representation learning for graph classification. We report accuracy (%) for all datasets.

1	Dataset	IMDB-B	IMDB-M	PROTEINS	COLLAB	MUTAG	REDDIT-B	NCI1
Supervised	GIN	75.1±5.1	52.3±2.8	76.2±2.8	80.2±1.9	89.4±5.6	92.4±2.5	82.7±1.7
Supervised	DiffPool	72.6±3.9	12	75.1±3.5	78.9 ± 2.3	85.0 ± 10.3	92.1±2.6	-
Cranh Varnala	WL	72.30±3.44	46.95±0.46	72.92±0.56	=	80.72±3.00	68.82±0.41	80.31±0.46
Graph Kernels	DGK	66.96±0.56	44.55±0.52	73.30 ± 0.82	=	87.44±2.72	78.04±0.39	80.31±0.46
	graph2vec	71.10±0.54	50.44±0.87	73.30±2.05	=	83.15±9.25	75.78±1.03	73.22±1.81
	Infograph	73.03±0.87	49.69 ± 0.53	74.44 ± 0.31	70.65 ± 1.13	89.01±1.13	82.50 ± 1.42	76.20 ± 1.06
	GraphCL	71.14±0.44	48.58 ± 0.67	74.39 ± 0.45	71.36 ± 1.15	86.80 ± 1.34	89.53 ± 0.84	77.87 ± 0.41
Calf ann amria a	JOAO	70.21±3.08	49.20 ± 0.77	74.55 ± 0.41	69.50 ± 0.36	87.35 ± 1.02	85.29±1.35	78.07 ± 0.47
Self-supervised	GCC	72.0	49.4	# # # # # # # # # # # # # # # # # # #	78.9	-	89.8	-
	MVGRL	74.20±0.70	51.20 ± 0.50	-		89.70±1.10	84.50 ± 0.60	-
	InfoGCL	75.10±0.90	51.40 ± 0.80	-9	80.00 ± 1.30	91.20±1.30	-	80.20 ± 0.60
	GraphMAE	75.52±0.66	51.63±0.52	75.30±0.39	80.32±0.46	88.19±1.26	88.01±0.19	80.40±0.30

The reported results of baselines are from previous papers if available.

Table 3: Experiment results in transfer learning on molecular property prediction benchmarks. The model is first pre-trained on ZINC15 and then finetuned on the following datasets. We report ROC-AUC scores (%).

	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	Avg.
No-pretrain	65.5±1.8	74.3±0.5	63.3±1.5	57.2±0.7	58.2±2.8	71.7±2.3	75.4±1.5	70.0±2.5	67.0
ContextPred	64.3±2.8	75.7±0.7	63.9±0.6	60.9±0.6	65.9±3.8	75.8±1.7	77.3±1.0	79.6±1.2	70.4
AttrMasking	64.3±2.8	76.7 ± 0.4	64.2±0.5	61.0 ± 0.7	71.8 ± 4.1	74.7 ± 1.4	77.2 ± 1.1	79.3±1.6	71.1
Infomax	68.8 ±0.8	75.3 ± 0.5	62.7 ± 0.4	58.4 ± 0.8	69.9±3.0	75.3 ± 2.5	76.0 ± 0.7	75.9 ± 1.6	70.3
GraphCL	69.7±0.7	73.9 ± 0.7	62.4±0.6	60.5±0.9	76.0 ± 2.7	69.8±2.7	78.5 ± 1.2	75.4 ± 1.4	70.8
JOAO	70.2±1.0	75.0 ± 0.3	62.9±0.5	60.0 ± 0.8	81.3±2.5	71.7 ± 1.4	76.7 ± 1.2	77.3±0.5	71.9
GraphLoG	72.5±0.8	75.7±0.5	63.5±0.7	61.2±1.1	76.7±3.3	76.0 ± 1.1	77.8 ± 0.8	83.5 ± 1.2	<u>73.4</u>
GraphMAE	72.0±0.6	75.5±0.6	64.1±0.3	60.3±1.1	82.3±1.2	76.3±2.4	77.2±1.0	83.1±0.9	73.8

Table 4: Ablation studies of the decoder type, re-mask and reconstruction criterion on node- and graph-level datasets.

	Dataset		Node-Leve	Graph-Level			
	Dataset	Cora	PubMed	Arxiv	MUTAG	IMDB-B	
	GraphMAE	84.2	81.1	71.75	88.19	75.52	
AP.	w/o mask	79.7	77.9	70.97	82.58	74.42	
COMP.	w/o re-mask	82.7	80.0	71.61	86.29	74.42	
	w/ MSE	79.1	73.1	67.44	86.30	74.04	
	MLP	82.2	80.4	71.54	87.16	73.94	
de	GCN	81.3	79.1	71.59	87.78	74.54	
Decoder	GIN	81.8	80.2	71.41	88.19	75.52	
Д	GAT	84.2	81.1	71.75	86.27	74.04	

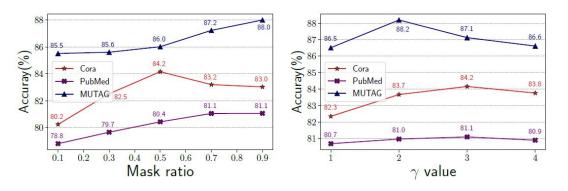


Figure 3: Ablation studies of mask ratio and scaling factor.

Thanks